Linear determinantal equations for all projective schemes

نویسنده

  • JESSICA SIDMAN
چکیده

We prove that every projective embedding of a connected scheme determined by the complete linear series of a sufficiently ample line bundle is defined by the 2×2 minors of a 1-generic matrix of linear forms. Extending the work of Eisenbud-Koh-Stillman for integral curves, we also provide effective descriptions for such determinantally presented ample line bundles on products of projective spaces, Gorenstein toric varieties, and smooth n-folds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinantal Schemes and Buchsbaum-Rim Sheaves

A natural and efficient method for producing numerous examples of interesting schemes is to consider the vanishing locus of the minors of a homogeneous polynomial matrix. If the matrix satisfies certain genericity conditions then the resulting schemes have a number of well described properties. These objects have been studied in both a classical context and a modern context and go by the name o...

متن کامل

Lifting the Determinantal Property

In this note we study standard and good determinantal schemes. We show that there exist arithmetically Cohen-Macaulay schemes that are not standard determinantal, and whose general hyperplane section is good determinantal. We prove that if a general hyperplane section of a scheme is standard (resp. good) determinantal, then the scheme is standard (resp. good) determinantal up to flat deformatio...

متن کامل

The Approximate Determinantal Assignment Problem

The Determinantal Assignment Problem (DAP) has been introduced as the unifying description of all frequency assignment problems in linear systems and it is studied in a projective space setting. This is a multi-linear nature problem and its solution is equivalent to finding real intersections between a linear space, associated with the polynomials to be assigned, and the Grassmann variety of th...

متن کامل

Determinantal ideals and monomial curves in the three-dimensional space

We show that the defining ideal of every monomial curve in the affine or projective three-dimensional space can be set-theoretically defined by three binomial equations, two of which set-theoretically define a determinantal ideal generated by the 2-minors of a 2× 3 matrix with monomial entries.

متن کامل

Generalized Divisors and Biliaison

We extend the theory of generalized divisors so as to work on any scheme X satisfying the condition S2 of Serre. We define a generalized notion of Gorenstein biliaison for schemes in projective space. With this we give a new proof of the theorem of Gaeta, that standard determinantal schemes are in the Gorenstein biliaison class of a complete intersection.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009